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SUMMARY 
One-dimensional metals are crystals exhibiting electrical conduction in a preferred direction while being completely 
insulating in sheets perpendicular to this direction. A thermodynamic theory is developed for deformable nonlinear 
1-D metals. The constitutive theory includes hereditary effects and is kept on a high level of generality. 

1. Introduction 

In recent years attention has been drawn to the newly discovered so-called one-dimensional 
metals. These are crystals exhibiting electrical conduction in a preferred direction while being 
almost perfectly insulating in the direction perpendicular to it. Of particular interest thus far has 
been the mixed square planar complex compounds of Pt, [1]. Measurements on the frequency 
dependent reflexivity are reported in [2]. Explanations for the behavior of one-dimensional 
metals have been attempted in the past on the level of the microscopic substructure of the 
material, [3], [4]. To our knowledge, however macroscopic, phenomenologic theories that 
would describe one-dimensional metals are lacking. This paper is an attempt to fill this gap. 
We shall be concerned with the derivation of the theory, leaving applications to a further 
report. Nevertheless, it will be apparent that the procedure applied here will also be applicable 
to other types of solids, such as composite materials consisting of alternating electrically 
insulating or conducting sheets or of a compound of fibres and matrix exhibiting the cor- 
responding electrical properties. 

In the purely mechanical theories of the dynamical behavior of deformable bodies an 
internal constraint is characterized by a restriction on the class of possible motions so that the 
constrained material can only be subjected to a restricted class of deformations. More generally 
in a field theory, an internal constraint must be characterized as a restriction on the class of 
possible field responses so that the constrained material can only be subjected to a restricted 
class of these fields. The usual constraint conditions occur in the purely mechanical theories 
and appear in the form of incompressibility and inextensibility conditions in the theory of 
composite materials or the theory of incompressible fluids and solids. The standard reference 
for treating mechanical constraints is Truesdell and Noll [5]. The procedure presented there 
has been extended by Green, Naghdi and Trapp [6] to include thermomechanical constraints. 
This background material, though physically unrelated to 1-D metals is nevertheless helpful, 
because its mathematical treatment is analogous to the one presented here. 

In the axiomatization of the theory of internal constraints Truesdell and Noll [5] assume that 
the forces maintaining the constraints do not perform work. Together with the constraint 
condition, they arrive at the result that two inner products formed from three vectors must 
vanish. Denoting these vectors by A, B and C, respectively and the inner product by ( . , . ) ,  
the statement is that (A, B ) = 0  for all B such that (C, B ) = 0 .  In Truesdell and Noll's case of 
simple mechanical constraints A and C are known to be independent of B. It follows that 
A = 2C. It is then sufficient to characterize an internal constraint by two inner products among 
three vectors, two of which are independent of the third. 

A different approach starts from the Clausius-Duhem inequality which must be valid for all 
thermodynamic processes which satisfy the constraint condition. By means of Lagrangian 
parameters the constraint conditions are incorporated into the entropy inequality. Satisfying 
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this emerging inequality for all thermodynamic processes then leads to the constraint response 
functions. 

It is exactly on this line that Green, Naghdi and Trapp [-6] have extended the approach 
chosen in [5] to include thermo-mechanical constraints. They have found three different 
generalizations, all of which are based on thermodynamic arguments using the Clausius-Duhem 
inequality. Basically they arrive at the same answer, namely that two inner products of three 
vectors vanish, but Green, Naghdi and Trapp assume that two of these vectors are independent 
of the third. This assumption is needed for their conclusions to be valid. 

It is thus interesting to note that there exist internal constraint conditions which do not 
satisfy Green et al.'s assumption. The constraint condition for one-dimensional metals is one 
of those. Although the calculations along the lines of the above inner product argument can be 
extended to the case of one-dimensional metals, the agreement of its result with that as obtained 
with the second approach must be considered to be accidental. 

In deriving a theory of one-dimensional metals we thus take the position that the constraint 
conditions must enter the entropy inequality as side conditions. In doing so, the derivation of 
the constraint response functions becomes a straightforward matter following well known 
arguments. 

The frequency dependence of the reflexivity, [2], suggests that the constitutive theory should 
account for hereditary effects. The explicit constitutive theory therefore is developed on the 
basis of Coleman and Noll's theory of fading memory [7]. It turns out that stress, entropy, 
polarization and magnetization are derivable to within a constraint response from a free energy 
functional by means of functional differential operations. As usual, heat flux and free current 
must be given by their own constitutive functionals. 

Specially the paper is arranged as follows: In Section 2 we list the balance laws of mechanics 
and electrodynamics and the constraint conditions. In Section 3, after introducing the thermo- 
dynamic principles, the basic constitutive equations of one-dimensional metals are introduced. 
After some functional analytical preliminaries we finally draw in Section 4 the conclusions 
from the entropy inequality. In Section 5 the implications from the principle of material frame 
indifference are derived and it is shown that in doing so the balance law of moment of momentum 
is satisfied identically. Finally Section 6 summarizes the results. 

2. Basic equations 

Consider a body N embedded in Euclidean 3-space. Let ~R be its reference configuration and 
its configuration at time t. The position of a particle with label X in ~R will be denoted by X, 

while its position in the present configuration is denoted by x. A motion of the body is then 
described by the smooth one-to-one map NR ~ N  

x = z(X, t) ,  (2.1) 

the functional determinant of which 

Det F = Det (Ox/OX) > 0 (2,2) 

never vanishes and may be assumed to be positive without loss of generality. The velocity and 
acceleration 

d d 2 
= v = z ( x ,  t) ; = = z ( x ,  t) ( 2 . 3 )  

are respectively, the first and second time derivative of the motion Z('). 
The dynamic behavior of electro-mechanical phenomena is described by the conservation 

law of mass, the balance laws of linear momentum, moment of momentum, energy and the 
Maxwell equations. Excluding the balance law of moment of momentum the dynamic equations 
a r e  

det F = PR/P ; (2.4) 
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p~/= div T +  p f  ; (2.5) 

p~ = tr ( T L ) -  div q + pr E + prr  , (2.6)* 

where tr (.) denotes the trace operation and PR the density function in the reference configur- 
ation, p is the density, T the Cauchy stress tensor, f the body force, i the internal energy, q the 
energy flux vector (heat flux) and L = grad v is the velocity gradient. Dots indicate differentiation 
with respect to time and pr T is the energy supply other than electromagnetic. The remaining 
term represents the electromagnetic energy supply. 

Maxwell's equations will be chosen in the form 

1 c~E ~P 
- -  curl B - J + curl (P x v) + curl M �9 (2.7) 
#o ~t ~ -  

~B 
c u r l E +  ~ = 0 ; (2.8) 

s0 div E = - div P + cr ; (2.9) 

div B = 0.  (2.10) 

In this form polarization is modeled by a dipole, while magnetization is modeled by a non- 
relativistic circuit. It is well known that Eqns. (2.7)-(2.10) contain the conservation of electric 
charges 

0~ + div J - 0 (2.11) 

and in fact, obvious differentiation procedures produce this equation. Hence satisfying the 
Maxwell equations implies identical satisfaction of the conservation of charge. 

A suggestion has been made in [10] to refer to the above set of equations as the Lorentz 
formulation. In Eqns. (2.7)-(2.10) we have chosen MKS units. Accordingly, So and t~o represent 
universal constants such that eo #o = c-  2, c denoting the speed of light in a vacuum. E is called 
the electric field, B the magnetic induction, J the electric current, a the charge density and 
M and P the Lorentzian magnetization and polarization, respectively. All vector and tensor 
operations used in Eqns. (2.4)-(2.10) are with respect to the present configuration. 

In a nonpolar continuum, which restriction we shall use here, the balance law of moment of 
momentum may be reduced to the form 

� 8 9  T r)  = - N  , (2.12) 

where T r is the transpose of T and N the dual to the axial vector of body couple, viz. N = dual I. 
As usual we shall view Eqns. (2.11) and (2.12) as identities rather than as equations. 

The field equations (2A)-(2.10) are completed by specifying electromagnetic body force, 
body couple and energy supply. To this end let the rest frame at the particle X be that inertial 
frame which performs a translatoric motion relative to the frame of the present configuration** 
coinciding with the velocity of the particle X. Clearly, the Maxwell equations could be written 
in this frame by performing Lorentz transformations. Denoting the rest frame value of A by ag, 
these equations remain form invariant under Lorentz transformations provided the fields A 
and d are related in a certain way. As we are not interested in an exact theory we shall neglect 
0 (v2/c 2) terms. Then 

g = E -~ v x B -~- O (I)2/c 2) ; 

v x E  
= B - c ~  + O(v2/c 2) ; 

J = J - a v ;  

* (div T)i=Tjl,j ,  tr(TL)=ToL w 

M x ~  
= v + c2--  + 0 (v2 /c  2) ; 

~g = M + 0(v2/c2)  ; 

= a + 0 (v2 /c2 ) .  (2.13) 

** This frame is often called the Laboratory frame. 
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In accord with the above definitions we shall denote g, 8 ,  ~ ,  ~/ ,  J and 6 as rest-frame values 
of the electric field, magnetic induction, polarization and magnetization, current, and charge 
density, respectively. Frequently the approximate value of the electric field in the rest frame 
as given in Eqn. (2,13) is denoted by �9 and is called the electromotive intensity, (see [11]). 

With the above definitions we are now able to give explicit expressions for f, ! and r E. These 
expressions have been motivated and derived elsewhere, [10], [12] and are: 

p f  = P .grad E + P x (curl E) + grad B. M - grad B .(P x v) 

+ ~tO ( p • 1 7 4  ., (2.14) 

! = ~ x 8+,,g-/x ~ ; (2.15) 

pr ~ : J . 8 + pd~ . (~r ) - J l  " ~ . (2.16) 

It remains to establish the constraint condition. To this end let D = A (X) be a material Cl-vector 
field over ~R with lID [1 = 1 and 6(.) its map onto 4 :  d = 6 (D, t). Clearly, f :  A ( . ) ~ 6 ( . )  reduces 
to the unit transformation when the bodies under consideration are immobil. Clearly, 

d = 6 (D, t) = F D .  (2.17) 

Apart from precisions to be presente d later on, I shall define a 1-D metal to be a solid satisfying 
the constraint condition 

N . F D  = 0 ~ g . d =  0, (2.18) 

where D is a prescribed smooth vector field indicating at each point the direction of relatively 
high electrical conduction. Clearly, because definition (2.18) may be considered to be a con- 
stitutive equation, it must (and does in fact) satisfy the principle of material frame indifference, 
[5]. 

The definition (2.18) characterizing one-dimensional metals is not the only possible one. 
In fact d" J = 0, where d now represents the direction of electrical insulation, would be another 
possibility. We have chosen Eqn. condition (2.18), because it will lead to a simpler theory, 
being aware however, that only comparison with experiments may decide about its usefulness. 

Dependent upon the physical situation the vector fiel~t D is either a one or two parameter 
family of vectors. If e.g. the direction of relatively high electrical insulation is parallel to a 
preferred axis a, then D represents the planes perpendicular to a*. On the other hand, in a 
composite material consisting of an electrically insulating matrix and conducting fibers, D 
coincides with the direction of the fibers. 

Sufficient smoothness preassumed, the condition (2.18) may be differentiated to yield 

d(d~.d)_=0;  g r a d ( 8 . d ) = 0  (2.19) 
dt 

and even further identities could be constructed, by performing higher derivatives with both 
sides of condition (2.18), (provided the derivatives do exist). 

3. The thermodynamic principle and the constitutive equations 

The field equations of section 2 are now completed by a thermodynamic principle and explicit 
constitutive equations. The first is given by the Clausius-Duhem inequality, the local form of 
which may be written as 

pl/+ div (q/O) > p r r / O ,  O > 0 (3.1) 

Here, tl denotes the entropy and 0 the temperature. For the entropy flux and entropy supply 
we have chosen the classical expressions. There are indications that this may be correct (see 
[10, 13, 14]). 

* T h a t  is D = 2 1 D  1 + 22 D2  w h e r e  D1, D2 is a b a s e  f o r  t he  p l a n e  p e r p e n d i c u l a r  to  a a n d  - ~ < 21 < ~ ,  - ~ < 22 < ~ .  
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Introducing the Helmholtz free energy 

= s -  t lO- g" (~/p) (3.2) 

and eliminating r T between inequality (3.1) and Eqn. (2.6), we obtain 

- p (q~ + t/~) q- grad O + tr ( T L ) - , # .  
8 (3.3) 

- ~ ' 8 + J ' ~ _ > _ 0 ,  

where the expression (2.16) has also been used. 
A thermodynamic process ~3 (x) at the point X is a collection 

$ (X)  = [E(-), B(.) ,  M(-) ,  P( . ) ,  J ( - ) ,  p(.) ,  x( .) ,  T( ' )  (3.4) 
q(.), ~(.), o(-), ~(.), ~(-), ~(.), ~(.)] 

compatible with the balance of mass, linear momentum, moment of momentum, energy and 
the Maxwell equations (2.7)-(2.10) defined for all t ( - 0 %  oe). 

Let f be a function over the reals. Then 

f '  = i f ( s ) = f ( t - s )  ; se [0 ,  oo) (3.5) 
and 

fa' = f J ( s ) = f ( t - s ) - f ( t )  ; s~[0,  ~ )  (3.6) 

are respectively, the history o f f  up to time t and the difference history o f f  up to time t. 
We call a material a polarizable and magnetizable 1-D metal if stress tensor T, specific 

magnetization ~g and polarization ~ ,  energy flux q, electric current J ,  internal energy s, 
Helmholtz flee energy ~ and the entropy q are, at any given time t and point X determined by 
the history up to time t of the displacement gradient F *, the rest flame values of the electric field 
S t, magnetic induction ~ t  the temperature O t and the present value of the temperature gradient 
g = grad 0. Knowledge of the history up to time t of a variable is equivalent to knowledge of 
the difference history and the present value. Thus, adopting the principle of equipresence, [5], 
the constitutive functionals assume the form 

s = 0  

s ~ O  

oo 

~ - - # / /  
s = O  

oo 

q = q  
s = O  

j_-j 
s = 0  

oo 

s = O  

s = 0  

Go: 

tl - - q  
s = O  

(~, ~ ,  ~ ,  o~, F, ~, ~,  O, g) ; 

( ed, gJ, ~ ,  S~, e,  g, ~ ,  O, o ) ; 

( e,', gJ, ~ ,  S~, v, g, ~ ,  S, o ) ; 
(3.7) 

where quantities on the right-hand side are functionals of the entire histories of the independent  
variables shown. Clearly, the Clausius-Duhem inequality places restrictions upon the response 
functionals. Our major goal is the determination of these restrictions. In the sequel we shall use 
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occasionally the following simplified notation: 

G = (F, e ,  ~ ,  S) ; r = (G, g). (3.8) 

We assume that the response functionals satisfy the principle of fading memory, [7], due to 
Coleman and Noll. Accordingly, let h (s) be a positive monotone decreasing continuous function 
of s on the nonnegative real numbers. It is convenient to regard the ordered quadrupel 
G=(F, g, ~, O) as elements of the vector space "~i16)= ~(9)(~((3)(~((3)(~ ,~F(1 ) where ~KI, ) is a 
real vector space with dimension n. With the inner product 

G~ "G2 = tr (F 1Fz)+N~ �9 g2 +N1 "~2 + 01 02 (3.9) 

~(16 )  becomes a Hilbert space, ~'~ 16). Similarly we introduce the vector space ~19), which with 
the norm (F1, F2)= G1.G 2 + g~'g2 becomes a Hilbert space ~19).  Denoting the norm cor- 
responding to Eqn. (3.9) by ][.]] we introduce a Banach space ~16~ by 

~(16):= G~/~16)I[[IGI[I = o [h(s)[[G(s)ll]2ds (3.10) 

111'111 is called the recollection or fading memory norm. 
In order to be able to draw conclusions from the entropy inequality we restrict our attention 

to materials, of which the response functionals depend continuously upon the difference 
histories G,~ and the present values of F. Furthermore, we presume that the free energy depends 
in a continuously differentiable way on these histories. More precisely, let 

(GJ, F) 
S~0 

be any scalar valued response functional to be defined for every 6~ e ~ 6 )  and Ir'~19). 
Then f ( ' )  is said to be continuously differentiable if for fixed//~s~c~,) and 7 ~ E , < 1 9 )  

1 J~ 
II ll +lllml/ s 

-c~ r ? (G~(s),F)-V a ? (G,~(s),FIII)}~O (3.11) 
s = 0  s=0  

as Ilrc[I + [liIllll-~0. Here, C~rf(. ) is a continuous functional with values in ~19)  and for each 
V co fixed G~ and F, aft=0 (G~ (s), FIII) is a functional depending linearly o n / / a n d  continuously 

on G~ and F. Of course Off(. ) is the partial derivative o f f ~  0 (G~ (s), F) with respect to F 
holding G~ (s) fixed. 

For further development we need the following chain rule, first proved by Mizel and Wang 
[15] and under stronger conditions by Day [16]. 

Chain rule 
Suppose that the functional f ( . )  is continuously differentiable and that F(-)  and G~(.) 

are defined on ( -  o% oe) and satisfy the chain rule condition, that is their values are in ~/((19) 
and W~16) respectively, they have two continuous derivatives/~(.) and F ( ' )  and for every t 
~ ,  G~ and G~ are in ~16). Then the function f (t)= L ~o (G~ (s), F) is continuously differentiable 
and its derivative is 

y(t)=0  P+v  (a (s),rfOJ). (3.12) 
S=0 s=0  

Let ~e~/116~ be an element in the neighborhood of zero. The function ~+ =~i(s),  where 
i(s)= 1, Vse [0, oo) is a constant function in ~16). The functional VGf~0 (" IQ +) is therefore 
a linear function in ~. Thus we can define a new functional &,fs20 ( ') such that 

V~ )" ('IO +) = A G f ( ')  O .  (3.13) 
s = 0  s = 0  
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With this definition and because of 

d G~(s)- Gi(~) G~ (s) = - ~ 

we may write instead of Eqn. (3.12) 

s = O  s = 0  

d G~(s)) 
- V a f f 0  (aJ(s) ,cru s 

where we have defined 

s = O  s = O  s = O  

Provided G~ and F satisfy the chain rule condition we may thus write 

~= D~ ~1 (G~(s),F).(7+O, ~1 (G~(s),F).O 
s = O  s = O  

s = O  

(s), r). ~} 

(~), r)- 

= tr { Des~o (Gd 

+ De ~ (a; 
s = 0  

+ D.q~ (a~ 
s = O  

+ D~I~  
s = O  

+ 0o ~r 
s = O  

(s), r). 

(a~ (s), r).  D 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

d G'(@ 
(G~ (s), r ) ' o -  VG s~=o ( ~  (s),r Us " 

With this expression we are in a position to draw the conclusions from the entropy inequality 
(3.3). This inequality must be satisfied for all admissible thermodynamic processes. "Admis- 
sible" hereby means that they satisfy the balance laws of electrodynamics and mechanics and 
the constraint conditions as well. At this point, there arises the question as to which and how 
many of the constraint conditions (2,18) and (2.19) must be taken into account in satisfying 
the entropy inequality (3.3). A clue in this direction is obtained by observing that in order the 
balance laws, Eqns. (2.4)-(2.11), with the source terms, Eqns. (2.14) (2,16), to be satisfied it is 
necessary and sufficient that the fields x, g, ~ and 0 be twice continuously differentiable. Thus 
the following constraint conditions must be met: 

g 'FD=O ; 
�9 FD+<f'[ZD =- 0 ; (3.18) 

g ' ~ ' D + g r a d g ' F D ~ K - ~ O  ; 
where 

2f'i~ = Fi~,,~. (3.19) 

Higher derivatives of the constraint condition (2.18) must not be taken into account if the field x 
is at most twice continuously differentiable. 

With the Lagrangian parameters 2,/x and v which are functions of x and t only, using Eqns. 
(3.17) and (3.18) inequality (3.3) becomes 
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- p [Da ~ ( - ) -  t/] ~+ tr [(pD e t p ( . ) -F  -~ T+/~d~| D)/~] 

- [ ~  + pDgO(" )-kWD] " ~ -  [eg + pDa 0( ' )3  "~-PDo~(" ) 

+ [ J + 2 D F  T] "g+v 'K q "g 0 => o.  (3.20) 

4. The implications from inequality (3.20) 

To draw the conclusions from the above inequality we need some information with regard to 
which variables may have arbitrarily assigned values. We assert that there exists an admissible 
thermodynamic process at the particle X at time t, for which {F, 8, ~ ,  0, g}, the material time 
derivatives {F, #, 0, g}, grad # and ~ may have any arbitrary assigned values. In fact, since 
fext, rr and a a~'e sources the balance laws of linear momentum (2.5), energy (2.6) and the 
Maxwell equation (2.9) can always be satisfied, irrespective of what values the aforementioned 
variables are assigned to. From the remaining Maxwell equations (2.7), (2.8) and (2.10) it then 
follows that the values of d~/dt and grad ~ are no longer freely assignable. Of the inequality 
(3.20), the fourth term thus needs special care. To facilitate future calculations, consider a 
Lorentz transformation from the Laboratory-frame to the rest-frame of particle X. 

Equation (2.8) then becomes 

curl' g + O~/&' = 0,  (4.1) 

where primes indicate differentiation with respect to the rest-frame coordinates. With the 
transformation (see [12]), 

d 
o/ t' = d--t 

7 = (1-v2/c2) -~ ; (4.2) (g v 0) 
grad' = g r ad l+ 7  radii + ~ | ~t 

where grada and grad II denote vector differentiation perpendicular and parallel to v, respect- 
ively. We thus obtain from Eqns. (4.1) and (4.2) 

1 (grad~ 8 -  (grad• 8) r) d _ 1 (grad 8 - ( g r a d  ~f)T) = 277 
dt 27 

+ �89 (gradl I g _ (gradl I N)T) (4.3) 

Substituting Eqns. (4.3) and (3.19) into Eqn. (3.20) it is readily seen that the emerging inequality 
is linear in .~e which may have any value. Thus its coefficient must vanish, implying that 

v = 0 .  (4.4) 

Since the remaining inequality is then linear in ~), F, 8, 0 and ~ one obtains 

s = O  s = O  

r = (aj (s), a)rT+ | ; 
s = 0  

= -- pDe ~ (G~ (s), a ) -  I~FD ; 
, s=O 

�9 ,g[ = --pDa~ ~ (G~ (s), G) ; 
s = O  

~l = Do ~ (G~ (s), G) ; 
s=O 

(4.5) 
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and 

v~ , a a'(s - q (G~ (s),r).o/O 
s = 0  s = 0  

Thus, the stress and polarization possess a constraint response. Note that heat flux and free 
current are not :'estricted by the entropy inequality. It proves to be advantageous to introduce 
the representation 

J = ) (G~t, F)-2FD (4.7) 
S = 0  

where 2 is the Lagrangian parameter associated with Eqn. (3.18)1. With this choice the dis- 
sipation inequality (4.6) becomes 

~o (G~(s), GId Gt(s,) + ~ (Gj'(s),F).g- q (GJ(s),F)'q/O>O (4.8) 
% s  ~ = = s = O  s = O  

Note that this implies 

but generally neither 

~1 (q (s), r). o <= o, 
s = O  

nor 

) ( q  (s), F). 8 > 0 (4.9) 
s = 0  

) (q (s), r). ~ >= o, 
s = 0  

(4.10) 

(4.11) 

nor 

% s__O ~ q (s), a a(s) __> 0. (4.12) 

Thus the Plank inequality is not satisfied except in an electric insulator or if 8 = 0. Following 
methods of Coleman it can then be shown that, if equilibrium is defined by 8 = g = 0 and 
v a n i s h i n g  t ime derivat ives  of  the var ious  i n d e p e n d e n t  fields that  the e q u i l i b r i u m  response  
functions 

f ~ = i (G~ (s) = O, F, O, ~ ,  O, O) 
s = O  

are given 

T o 0~ b ~ e  T+~, .  J[~ ~ . 
- ~F ' = - p 0 ~  ' (4.13) 

~ _ _ p ~ + ~ .  , ~ _  
' ~ 0 '  G O  

while 
q ~ O = 0 . ;  j ~ o = ~ - ;  V ~ 0 ~ o = 0 ,  (4.14) 

where 

7"= ~tS| ; # = -I~FD ; J = -2FD.  (4.15) 

Moreover, in a theory neglecting Joule heat it can be shown by a standard approach (see 
Coleman [8]) that ~ < 0, provided the deformation gradient, temperature, electric field and 
magnetic induction are held fixed. In particular the equilibrium Helmholtz free energy can 
never increase. 

Let Gt~o be the constant continuation of the history G (s), that is, let G,~o (s) = G (s) for s = to and 
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c _ _  G,o ( s ) - G  (to) when s = to. Then from a proof similar to that of Coleman [8] it follows 

~11 i Gct iS" u ,or (a) 
s = O  

as t-* oo. That is to say, under constant continuation the free energy relaxes to the equilibrium 
value. This property together with ~t =< 0 (under constant continuation) implies 

((Gto (S)d , G,o ) > O ~176 (G), (4.14) 
s = O  

asserting that among all histories ending with given values of the deformation gradient the 
electric field, magnetic induction and the temperature, the constant history yields the least 
energy. 

These results, which are only correct when Joule heat is neglected, are valid in particular in 
a linearized theory. 

5. Consequences of material frame indifference 

The principle of material frame indifference, [5], which states that an admissible process must 
remain admissible after a change of frame of reference of the form 

x * ( t ) = c ( t ) + Q ( t ) x ( t )  ; t * =  t - a ,  (5.1) 

where c(t) is any time dependent vector, Q (t) any proper orthogonal transformation and a a 
constant, imposes certain restrictions on the constitutive functionals. The scalars ~, t/, e and 
0 are unaffected by the change of frame, but F, 8, N, ~ ,  .///, J ,  q, g and T are assumed to 
transform as follows: 

F-+QF ; #-+Qg ; 
q ~ Q q  ; ~ - - , Q ~  ; 

g-+Qg ; J - + Q J  ; 

Defining 

C'(s) = [F ' ( s ) ]Tr(s )  ; 

E'(s) = [F'(s)]T8 ' (s); 
g' (s) = [F' (s)] T~'(s), 

and the Piola stress T v by 

r , = F - l ( r _ f ) ( F  I)T, 

~ ' ~  Q~' ; 

~ - -*  QMI ; 

T -+ QTQ T . 

Grad 0 = Fg ; 

it can be shown using methods introduced by Noll [17] and Coleman [8] that 

0 = ~t (C~,E~,B~,O~;C,E,B,O);  
s = O  

s = O  

s = O  

g = (C~, E~, B~, 0~; C, E, B, O) ; 

(C~, E~, B~, O~; C, E, B, O) ; 

(C~, E~, B~, 05; C, E, B, O)Fr+  f ; 

(C~, E~, B~, 05; C, E, B, O ) + ~  ; 

(C~, E~, B~, O,~; C, E, B, O) ; 

I/ = 

r : v i  
s = O  

= F ~  
s = O  

s = O  

(5.2) 

(5.3t 

(5.4) 
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and 

J = F ~ r  (C], E~, B], 0~ ; C, E, B, 0, G r a d O ) +  ; 
s = O  

q = F  q (C~,E],BS, O~;C,E,B,O, GradO),  
s = O  

where C = C(t) and C~ (s)= C ( t - s ) -C(s)  and similarly for the other variables. 
Two questions remain left to be answered. First, how are the operators D r [ . ] ,  D~[. ] ,  

D e [. ] and Dc [" ], DE [" ] and D s [ -] connected, and second, is angular momentum satisfied 
identically? Both questions can be answered by following an argument due to Coleman, [8], 
involving jump continuations. As the calculations are straightforward generalizations of the 
ones of Coleman we simply give the result. To this end, let 

= ~ (V',(s), ~'~(s), ~5(s), O's(s), C,g,a~,O) 
s:o (5.6) 

= C,E,  B, 4) 
~'= = 0  

be the functionals for the Helmholtz free energy ~. We then show that 

Dr (') = 2FD c (') + 
s = O  = 0  

D E  (') |  + 0 B ~ ( )  

Using these representations we may write for stress, polarization and magnetization 

T=T+2pFDc ~=o(')FT + (pFDE ~=o(')) |  + (pFDB ~=o(')) |  

: -PVDE ; 

~l = -- pFD E i~= ~ (.), 

(5 7) 

(5.s) 

from which one easily deduces 

1/2(T = T T) = - 1/2 [ 8 |  # |  + . ~ | 1 7 4  (5.9) 

which is equal to dual l. Conservation of moment of momentum is therefore identically satisfied 
once objectivity has been applied to the constitutive functionals. 

6. Alternative approaches. Discussion 

In the preceding derivation of a theory of deformable one-dimensional metals the constraint 
conditions were introduced into the entropy inequality by means of Lagrangian parameters, 
which are assumed to be functions of place and time only. Once, this step was taken, the sub- 
sequent derivations turned out to be more or less straightforward. 

A more subtle question arose when it was decided how many constraint conditions had to be 
taken into account when drawing the conclusions from the entropy inequality. In principle, 
by successive differentiation as many constraint conditions as we please can be derived. Of 
those only identities were considered, which did not require higher smoothness properties of 
the basic field variables than the balance laws of mechanics and electrodynamics. Obviously 
this leaves us with the open question that other results might emerge when a different point of 
view is taken. In the extreme case of analytic solutions, all fields are infinitely differentiable. Our 
point of view then would request, that an infinite number of constraint conditions be considered. 

Journal of EniIineerin9 Math., Vol. 9 (1975) 103-115 



114 K. Hutter 

By induction it is easily shown that for one-dimensional metals the same results emerge as the 
ones which were derived in the preceding section. 

As stated in the introduction there is an alternative approach to derive a theory of one- 
dimensional metals, which goes back to Green, Naghdi and Trapp [6]. One starts by assuming 
that the constitutive functionals are determined to within a constraint response: 

f = ~ (Gta(s), G, g)+#f (6.1) 
s = 0  

where # is an undetermined parameter  which is only a function of position and time. 
These representations are then substituted into the entropy inequality, which in our situation 

gives 

- p ~ + #  ( -p (~+~lO)  - ~ + t r ( ~ L ) - ~ ' g - J l . ~ + ~ ' ~ )  + ~, > 0 .  (6.2) 

Here ff is a term not involving # and/). Since there exists a thermodynamic process where the 
last two quantities may have arbitrarily assigned values and since ~ is not a function of # and 
one concludes that 

t } = 0 ;  

-:-p(r +t/0) - q ~  + ,.gr + = 0 (6.3) tr ( ~ L ) - ~ . g -  

and 
> 0 (6.4) 

It is now observed that Eqn. (6.3)2 has the form of an inner product, say (A, D) .  Similarly 
the constraint conditions can be summarized by (C,  D ) =  0. Two difficulties now arise. First 
no unique definition of C is possible, since some of its components depend upon those of D. 
Second, D must not have any arbitrarily assigned value, but be chosen compatibly with the 
balance laws of electrodynamics (and mechanics). There is no unique way of introducing these 
side conditions. Should those be introduced in Eqn. (6.2) or in one of the inner products 
(A; D)  and (C, D)  or both? The values of the constraint response thus depends on the choice 
of these possibilities. Hence we must reject this approach as a means for determining the 
constraint responses. 
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